Teaching Methods

How I teach… Work & Energy Part 3 – The Math!

This is part of a series!
Part 1 (Work) Part 2 (energy bar charts) Part 4 (Vertical Whiteboard +Lab)


After over a week of work and various representations and practicing energy bar charts we finally dive into the math. We’ve already created mathematical models for spring energy and gravitational potential energy and I give them kinetic. Now we begin.

I want to press on the students that there isn’t an “equation” for energy problems that they are looking for. They need to determine thee equation from their bar chart and physics they already know.

We will start with another example problem and generate the equation through the bar chart. Students then have the opportunity to try a bunch more iterations on their own. This is about the time I will do the hopper popper lab energy style.

In AP I will open the following day a step further by giving them the problem below as a warm up (students do NOT have the bar charts provided!)

Students are first asked to create the bar charts because there’s no point in trying to write equations and solve for anything until the bar chart is correct. In the first part most students will neglect to include friction. In the second, students will say the ball only has potential energy at the peak, forgetting that the horizontal component stays constant!

The purpose of this exercise is twofold: first, it’s a great opportunity for interleaving. Second, it demonstrates to students they need to be ready for anything!

This year I’ve been incorporating vertical white boarding from Building Thinking Classrooms in Mathematics and it’s been truly amazing. After this exercise we went to vertical boards where students had two more problems, one was straightforward with friction while the other was solving for the height of a ramp needed so a ball can just make it around the loop.

The following day students engage in my conceptual whiteboard challenge where I help scaffold an expert approach to problem solving.

Next up, what my mathematical lab looks like for energy. Time to bring out the toys!

Turns out I also have a lecture video for this one (thanks COVID!)

Teaching Methods

How I Teach… Work & Energy (part 2)

This is part of a series!
Part 1 (Work) Part 3 (problem solving) Part 4 (Lab)


We move into energy conservation pretty quickly. Similar to our introduction to work, I pull on prior student knowledge. How many energy forms can you name? As students list them I copy them on the board, sorting them into mechanical and non-mechanical forms. Once we’ve exhausted this list I give them the category names and also the definitions of potential energy as energy of position and kinetic as energy of motion. We discuss how potential energy requires a position that can be measured within the system.

One of the best ways I’ve learned to support students is to teach them to create bar charts. I’ve seen many iterations of this, in the modeling community these are LOL charts. I, personally, haven’t been convinced to continue to use quite as much time on the systems part as many in the modeling community do (literally for the sake of time) but the key feature here is that we are taking concepts and translating them into a kind of visual, mathematical model.

So this is what we do first. We do a few examples (it’s like a checklist!) and then students are on their own for some samples. Emphasis is placed on the process:

  1. Identify your initital and final states
  2. Sketch a picture of each state
  3. Identify your system
  4. Identify which energy/ies are present
  5. If there is a change between initial and final then we need to include work.
  6. Double check that you have, in fact, accounted for any possible external forces that may have done work.

I show students how defining different systems can still get you to the same answer and WOW! Work done by gravity is the same as the potential energy due to gravity… the difference is the system.

I actually have the COVID-lecture version of this video when I wasn’t able to run this lesson with the whole class. While you’ll notice I do go into the math here, it’s really not an emphasis until later. In my regular class I don’t touch it at all until the next day

Teaching Methods

How I Teach… Work & Energy

Interestingly enough the work and energy unit/chapter has become my litmus test for whether or not I’m going to invest time in a resource. It was what spurred my frustration with The Physics Girl’s AP review series (although I’ve learned that when you’re actually commissioned by someone like PBS you have to bend to the whims of the corporation).

So what’s the litmus test? Open the resource to the first page of the Work & Energy chapter. If you see “work is defined as force times distance” close it and move along! First of all, let me be totally clear, that was me early in my career. I taught that work was the dot product of force and distance, we did a lot of different calculations and then we defined energy and did conservation of energy. My frustrations began with the fact that students were not transferring the idea of work over to conservation of energy. They deepened when upon reflection I realized my angst was because the core idea is not just that “energy is conserved” but that work causes a change of energy in a system.

Enter the new dynamics. I’ve talked about how the structure of your units is really going to guide students to what is important. If you start the lesson with an equation, then they are going to assume that equations are what’s most important. However, if we start with their preconceptions, build on that knowledge and form models we can get a little farther than equation hunting.


This is part of a series!
Part 1 (Work) Part 2 (energy bar charts) Part 3 (problem solving) Part 4 (Lab)


I start by asking students to name types of work. The list looks something like this:

  • Homework
  • Housework
  • Yardwork
  • work work (a job)
  • Wood working

and so on…

Then I ask students what is shared amongst all of those ideas. I’m looking for two answers, that they all require effort and that they all end in a change: Do your homework and your brain grows, work a job and you get paid… and so on.

So then I give students a list of tasks: lifting your backpack, holding your backpack, dropping your backpack, walking with your backpack (at a constant speed), climbing the stairs with your backpack, and I ask students which of the following are an example of doing work. We don’t share answers quite yet because I don’t want to participate in “expose and shame” where we trick students into marking the wrong answer. After they come up with this list then we formally discuss work as “a change in energy of a system due to the application of forces”. I emphasize the change which is in alignment with our original definition and “application of forces” which is the “effort” part they mentioned earlier. We go back through the examples and have a discussion about which are work and how.

Note: We’ve already discussed systems when we did forces, so there is a review of this idea as well.. the concept of systems is critical to student understanding of work and energy so if you’ve not done systems yet you need to hit this hard!

I’m going to include a few of the sample problems we work together in class to hit different ideas:

I ask this question right after our intro to work. I let students come up with lots of ways to reason the answer. The “correct” answer is that the force is perpendicular to the displacement, but this is also a good time to discuss that a “before” and “after” snapshot would also look identical, or that with each orbit the displacement is zero!

I ask this question in two ways: first as presented, then I ask them how the ranking changes if they were asked about the work done on the OBJECT. This is also a good place to discuss what negative means in the sense of work (positive work ADDS to the system while negative work takes away from the system)

Also of note: in AP I tell them that any time they get a graph they should ask themselves “does the slope tell me anything, does the area tell me anything” slope is essentially dividing the properties while area is multiplying (I know this is a major oversimplification, but it’s an algebra based course). I show them a graph of force vs displacement and ask how they find the work done (area!) they have a few practice items with these.

We run the spring lab where students discover Hooke’s Law and then I ask them to determine the amount of work done on the spring. Most students are able to get to the idea that its 1/2kx^2, but I do always have a few groups that want to just sub in kx for force and end up omitting the 1/2. This is a great conversation to have in a board meeting.

In my regular classes I run this great desmos activity I found by another teacher (try it out here).

First, students move the sliders to make the graph match the scenario…

Then that graph is reproduced on the next slide so students can use it to perform the calculation

This familiarizes students with graphical representations and the idea of how positive and negative work affect the system. I added one last slide to the original asking students to review what they learned in the activity and predict the work done by the spring in their lab

When we are ready to move to energy, I open with the following question:

A ball is dropped from rest.

  1. Define the system to be just the ball. Sketch a diagram showing the ball and the earth and identify the system by drawing a dashed circle around the objects in the system. Include any relevant forces. Is work being done on the ball? Explain your answer.
  2. Define the system to be the ball and the earth. Sketch a diagram showing the ball and the earth and identify the system by drawing a dashed circle around the objects in the system. Include any relevant forces. Is work being done on the ball? Explain your answer.

This is a great way to talk about how the same situation can describe work or not. The gravitational force is clearly inside of the system in #2 and therefore is a NON example of work.

We’ll discuss how I move from work to energy another day!

Teaching Methods

My Favorite Retake

At some point while considering equitable grading practices, I found myself searching the archives of TPT looking for some ideas regarding retakes. While I appreciate the idea of an honest retake, my experience has been that it is simply more time and effort on my part, and minimal effort and a hope to just “do better this time” on the part of my students. I ran across Jeff McManus’ article regarding the “box score” (“Retests”: A better method of test corrections)

 In short, when the students turn in their exam, they receive a blank copy of the exam and they get to redo it, using any resources. If the redo is perfect, their old score gets a bump on the square root curve. I liked this notion,  but had a dilemma—my exams in AP Physics are taken from secure college board documents which are not to leave my classroom. Additionally, I knew that certain groups of kids would work together, while others would not take the initiative to join a group, attempt to work on their own, and not reap as much of the benefits. Not wanting to lose the integrity or security of the exams I needed to make a modification on the assignment.

I informed students of the opportunity to do a retake. Since they needed time to really work the exam, I offered them a “collaboration day” during lunch (our students have a shared lunch hour). The retake would be the following day at lunch as well. (Collaboration day came and I was enthralled. Two thirds of my students came (this has increased to as high as 80%) , received a blank copy of the test, and started talking and working together. Large groups of students formed around white boards to tackle problems, the energy was palatable and the camaraderie was invigorating. Since the students had no number to form an idea how they had actually done on the exam, there was a wide range of abilities in the room.

One of my best students commented to me after collaboration day, “I thought I did really well, but I realize there was a lot I didn’t know” The need to score a perfect in order to obtain an increase in points also motivated students to grill each other for explanations until they understood and could reproduce the work themselves.

Retake day arrived and I had a full house. Students were able to finish their previously 40 minute exam in 20 or less because they knew how to attack the problems and most students were able to perfectly answer the problems.

I struggled, however, with the notion that students might memorize steps to a solution, rather than it being truly valid. I added a reflection component to the retake. Students needed to explain to me what they had previously misunderstood that now they comprehended. The reflections were telling. Students who had obtained 100% on the exam could clearly indicate their faults in either concept or problem-solving approaches. Students who were unable to obtain 100% were unable to adequately reflect on what they misunderstood.

I have continued this practice, in particular with the energy exam, for the last 5 years since I first came across the article. It is not my first or only method for re-assessments, but it is certainly a powerful one. A few changes and observations I’ve made over the years:

  1. To avoid the memorization piece, instead of testing next day, we test 5-7 days after the collaboration day in order for students to “forget”
  2. I had a really hard time not bumping a student who earned a 60% and then got all of the FRQ right and missed one MC. So I do a half-bump… so if the full bump is 10*sqrt(60) = 77, the half bump is 77-60/2 = 8.5 60+8.5 = 68.5, which I’ll likely round to 70 out of generosity.
  3. I’ve had one instance where a student with extreme anxiety and perfectionism this was problematic. I made alternative arrangements for that student ahead of the retake (they got 100 anyway).
Teaching Methods · Uncategorized

“Physics of” Projects – End of Year

Did you come here from a schoolology link? I’d love to know how you’re using this post! Feel free to contact me!

That time between AP exams and summer break is weird and special all at the same time. (If you’re looking for review ideas, here’s what I do before the exam) Depending on when your year starts it’s also possibly extensive. Watching movies and playing games is really only fun for about a week. If you are in all AP classes it gets old pretty fast when the whole day is mind-numbing for the next four weeks.

To use the time productively, and enjoyably, I assign a “physics of project”. I was actually inspired to do something like this after seeing Professor Gordon Ramsey continuously bring his undergraduate students in to Chicago Section AAPT meetings to present their original research. Most memorably I recall a project on music. The student who played saxophone in marching band, make a sax out of PVC and compared the tonal quality to a real sax using the same mouthpiece. He also did an acoustical analysis of his playing vs Professor Ramsey’s playing (which was really cool to basically see the differences between a “novice” marching band player vs an experienced improvisational player).

I believe that same meeting was the one where we hosted Rhett Allain who presented on the Science of Superheros.

The Prompt and Parameters

The prompt is simple: students are asked to research the physics behind anything they want.

The only real parameter is that whatever they choose they need to be able to collect and analyze data. If they cannot directly collect data then they need to find a way to come up with assumptions for measurements (analyzing videos, researching quantities) or find a way to model what they hope to research.

That’s it.

Ok, ok… I provide a little more structure than that, because we all know if given 2-4 weeks to complete a major project most students will put in 40 hours of work the 2 days before the deadline.

Here is what I provide:

Your task: In a group of 1-3 people:

  • Pick a topic to study the physics of. This can literally be anything, but it needs to be something that you can find a way to either physically model and/or otherwise collect data.
  • Research the topic and collect data. You may collect data inside or outside the classroom. Inside the classroom you have access to all probeware and software. If you are wondering if I have something, ask because I probably do. Outside the classroom your cell phone is your largest asset. Additionally, I have 4 iOLabs from the University of Illinois that can run nearly all of the data collection as my Vernier probes can. You may check one out for 2 consecutive days at a time. A sign up will be available next week.
  • Write a formal lab report (background, theory, purpose, procedure, data, analysis, conclusion etc)
  • Present your results in a 10-15 minute presentation. Come prepared with either a poster or slides because physics is visual!
    • When you present, you will be asked questions about the physics of your project and considerations to make it better. Be sure you’ve considered all of the assumptions you’ve made carefully and intentionally!

The first assignment students must provide me with is a project proposal. They need to have a concrete plan for how they plan to measure and analyze their data. This is submitted to me within the first week of the project. I provide students with feedback regarding their plans and suggestions as appropriate.

Next, I ask them to do some background research. It’s like a super watered down literature review. I want them using sources and learning a bit about what they are planning to study before they dive in. I ask for just a page.

The following few weeks they have a simple check in: what have you accomplished, what challenges are you running into, what do you need to do next. These check ins hold them accountable. All of the smaller assignments are included in the final grade.

The final product is a presentation and a paper. The paper is effectively a large lab report.

Students are given the following outline (dates were when we used to end on Memorial Day)

Student Products

Student projects are AMAZING

I will have many students analyze real data they’ve collected like this student who looked at the oscillations of her dog drying himself

Or I will have students analyze the physics of something they maybe cannot capture data directly, but they find ways to make estimates. Like this project on the physics of Nathen Chen

These projects have spanned everything from “is it possible?” in the movies, to students analyzing themselves in their own sport, to topics like rainbows that we don’t cover in AP Physics 1.

Students regularly report that this is their favorite activity the entire year, and the activity they are most proud of. (It also gives me a great story to tell in rec letters!)

When students give their presentations I want to run this much like if they were presenting research. I expect them to talk about what they might do or change if they did it again, or if they wanted to explore further. I ask them questions about their methodology and assumptions. During this process we also open the discussion to the whole class to brainstorm ideas as well.

Student work

If you want to see a sample, here is The Physics of Nathen Chen paper and the Wet Dog Slides and because we all need a little Monty Python, here’s a really extensive student paper on the Black Knight

Teaching Methods

Student Self-Evaluations for Growth

Grading. Feedback. Oh how we want it to be effective, but too often our time is not exchanged for valuable student learning. When the focus is the grade, rather than the learning, and the grade is “final” with no opportunities to grow, why would students care about the feedback? They look at the grade, make a judgment of themselves as learners of physics, and toss it. Not only do they miss out on the growth opportunity, they miss out on all of the things they did correctly. 

I always love when students come to me and we have one on one conversations because these are really fruitful, but there’s literally not enough time in the day to do this for 100-200 students. 

Besides, as a high school teacher my lasting lessons need to be the ones that will carry them through college and beyond. None of those have to do with properly using F=ma. 

Recently in my regular physics classes I’ve worked to make the process more transparent. We do regular “check-in’s” (yes, they are quizzes) that are focused on 1-2 objectives, but the other piece I’ve added is having students self-evaluate their work in the same way I evaluate their work. 

This is not about providing solutions (yes, it’s part of it). It’s about making the students go through the process in a non-threatening way so they can look for trends and patterns in their work. 

Here’s what it looks like

Currently we are wrapping up reflection. I want students to be able to do ray tracing and mathematical calculations. 

One of the changes I made years ago was to ask students to do the ray diagram first, making it roughly proportional, and then work the math and verify the two answers check out with one another. I proclaim to students they won’t need me to ask if they did it right, they should know

Historically I’ve had the solutions available at my desk for students to check the work. But you know what they do? They look at the final answer and move on. 

My biggest problem? Students just will not draw that image in on their ray diagram! I also have a problem with students not putting arrowheads on their light rays. Now, from a student learning objective process, both of these omissions are not problematic if the goal is to locate and describe the image. However, for a student who is struggling, these omissions can make it really difficult. I don’t want to punish students who clearly know what’s going on, but I don’t want to settle for incomplete work, either. 

Enter the self-evaluation. 

I create a checklist for students to go through, and I have them go through this checklist for each question. I reproduce the checklist for each question so students are required to look at each piece of their work rather than trying to summarize everything from the start. Why do I do this? I want them to see patterns in their work.

Here’s what it looks like for ray diagrams

Here’s what the math check list looks like. 

I ask students to evaluate their answers with my solution guide. I also ask them to give themselves a score. 2 points if everything is right. 1 point if something is right but there are things missing or incorrect. 0 points if nothing is correct. Their score out of 4 gives them an idea of the letter grade they would earn from the work. 

So the whole document looks like this:

I explain they might notice they are marking “no” over and over again. When they notice this, that piece is the piece they now know they need to work on. 

To make sure students are self-aware, I asked them to summarize what they did correctly, and what they did incorrectly or omitted. 

I will be honest, part of me expected students to kind of half-ass the assignment. But something magical happened: students who hadn’t finished the assignment evaluated the ones they did… and then they worked the rest of the problems and corrected themselves!!!

We will see how the test goes next week, but I’m really hopeful! 

Teaching Methods

AP Physics 1 Review Unit

As a general rule I kind of hate reviews. They make the students feel good, but I’m not sure how much they actually get from the traditional review session a day or so before the test. I do a lot of problem solving work with my students all year long, using different strategies to help maximize their efforts on both the multiple choice and the FRQs. So by the time we are two weeks from the AP exam I want to build their confidence, let them have some fun and have some meaningful conversations along the way.

We dedicate a day to each of the topics on the AP exam. Each day there is a new challenge. (Links to activities provided!)

For the kinematics challenge students have to “match the graph” but unlike the first week of school, I want them matching the values and intercepts as well!

Last year for day 2 we did a long forces FRQ practice. We had 25 minute classes in SY 2020-21, so I did not have time to do the practice as I described in this post until finals week. My practicum asks students to determine coefficients of friction using only a meterstick.

For UCM I focus students in on rote practice drawing force diagrams and writing sum of forces expressions for multiple scenarios.

Work and energy has so many cool opportunities for a lab practicum. I have students choose their own adventure from one of several Pivot Interactives videos

For momentum I give students a random ziploc bag of stuff (beans, pennies, highlighters…literally anything I can find)… and I ask students to come up with two methods to determine the mass of the bag!

Simple harmonic motion is a card sort. I have position, velocity and acceleration vs time graphs generated for a mass-spring system and a simple pendulum. (link to jamboard version from 2020-21 SY) I also have some extra graphs. (Here’s an example of a completed assignment!)

I believe firmly in the power of deep conversations. The challenge is making those conversations into something cohesive and reflective. Each year I move further away from “traditional” review. At some point we have to trust that we’ve done the best we can as their educators and that at some point we have to let them fly.

Teaching Methods

Tackling the Long AP FRQ

Sometimes APP1 is literally the worst.

The folks on the writing committee for questions must get really excited about writing interesting questions for the long FRQs… the issue, however, is that students generally suck at them.

Average and standard deviations for the last 4 years of long FRQs (2020 omitted for obvious reasons)

Here’s the thing though: I know that in a non-testing environment, my students should be able to perform way better than these national numbers. However student responses in an exam setting tend to be long-winded, lacking a clearly defined direction and often taking too much time down useless avenues.

So how do we correct this?

Firstly, I believe it is more important to give students the confidence that they can tackle these problems than insisting they do tackle these on a unit exam. Mindset makes a major difference.

Also, given the suggested time of 25 minutes, it’s not fair or appropriate to put one of these on a unit exam because it means the students grade will mostly be based on the question type, rather than their actual mastery.

To build student skills and prepare for the exam I set a few days aside during the year to specifically practice the long FRQs. Sometimes it’s the lab question, sometimes it’s the quantitative reasoning problem, but I try to do it at least once per unit.

Here’s the cycle:

Round 1: Skim and annotate on your own (5 minutes) I want students to have the feeling of sitting down for this question cold, with only their brain available to them. However, I also want to build their testing strategies and problem solving skills. For English we teach students to skim the passage and annotate the text by making a note of big ideas for each paragraph (I’ve worked as an ACT tutor). Why shouldn’t we do the exact same thing for these items in physics?! In fact, sometimes there are some easy points nestled in at the end… or… we can find the meat of the problem doesn’t show up until part c or d. Students often sit at the problem and begin at the begining and work until the end. While this is ok for homework, on a high stakes exam they are possibly leaving minutes and points to waste.

Round 2: Friends No Pens (10 minutes) you may have seen me talk about this strategy before a test. Many folks comment about how this reduces anxiety. I see friends no pens serving two extremely valuable purposes. First, it helps students organize their thoughts by saying them aloud. Second, it forces students to clearly and accurately communicate with their peers. By doing this, they will write more succinctly when it comes time to do the work.

Round 3: Individual Work (10-15 minutes). I explain to students they’ve already had 15 minutes to “work” the problem, so they should only need 10 more to finish. I ask them to complete as much as they can in the time.

Round 4: Discuss in a group: Sometimes I omit this phase and give them the scoring guides immediately. Other times I let them discuss their solutions in a group. When I do this, I mix up the groups from the students they talked with during friends no pens. Students are asked to make corrections as needed

Round 5: Self-score: Lastly I give students the AP scoring guidelines. This is a really important piece because they should see exactly how they are evaluated. A student noticed today “Ms R… there’s no point for the answer” NOPE! It’s all about the work. Other students noticed how stating momentum is conserved is worth points. At this time in the year we’ve pretty much covered all of the physics and now I want to work to maximize the points they can earn on the exam so their score reflects what they are actually capable of.

Sometimes (especially the first one we do) we debrief afterwards about the activity. Sometimes I have them turn these in for quiz points. Sometimes I let them keep the assignment. Sometimes I skip friends no pens. I will have them annotate, then solve the problem then discuss. I ask them to give themselves a “my score” grade and a “with friends” grade so they can see the difference between the two. Much of our conversation is focused on identifying big ideas and writing in a conscience manner.

How do you tackle preparing students for these items on the AP exam?

Teaching Methods

Sneak Peak to Reduce Test Anxiety

Have you ever looked at the gender discrepancies on those who score a 5 on the AP Physics 1 exam? It’s nearly a 3-1 ratio! AP scrapped all of the data in 2021, so probably not. I started analyzing this data around 2019/2020 and was pretty shocked. It got way worse when you looked by race

Percentage of male and female test takers who earned a 5 on the APP1 exam in 2018. Of 17,589 underrepresented female test takers, only 58 earned a 5

“Surely not MY students” I thought. “I’m a female teacher AND I’m super aware of the issues around female performance in the physics classroom”

I checked my data. The same patterns persist.

So I dug a little deeper. I knew that I had female students who were on or above the playing field of some of my male students. What was going on that it was so hard for my female students to earn 5’s?

BY THE WAY… this is NOT a physics problem nor is it a math problem. Check out the gaps on AP Physics C and AP Calc…. WAY smaller

Notice the gaps are more consistent across racial groups than they are for APP1

What I realized was it was their performance on the multiple choice.

Then 2020 offered an incredible opportunity. I could test my hypothesis by pulling the national data when AP had no multiple choice on the exam.

Guess what happened? The gaps were reduced.

Notice the gaps are more in line with the gaps on APPC and Calculus when there was no MCQ

In my college experience the classes I recall learning the most were the ones where exams were not “gotchas” but opportunities to deepen our understanding of the material. I had one teacher give legit take-home exams. It was nice, but not exactly a learning opportunity.

The next professor did something different. He gave us twice as many problems as would be on the exam a week ahead. We got together as a group and worked all of the problems over the week. The exam was “open annotated textbook” and the questions were ever so slightly different from the originals. The course was Physics 470 – subatomic physics. It’s the class I learned the most in.

The third professor who did something similar orally read us the exam the week before. He would leave out important details or specifics. “You have a circuit that looks like this… you will need to find the potential across two of the nodes” I also learned a lot in that course.

Taking all of these things into consideration, I’ve really modified the way I approach unit exams in my class. After seeing success with this model it has become a model I use starting on unit one and continue to implement until the semester mark.

I give students the entire test the day before the test.

But won’t they memorize the answers?

Isn’t that cheating?

How do you know it’s really their work?

Simple! I take off the part of the question that says “determine the _______”.

What do I mean by that? Here’s an example problem:

Now let me make this clear: students are expected to stow away all electronic devices before we begin so there’s no photos or google searches. Additionally, students are only allowed to use whiteboards. No paper. Nothing leaves the room.

Here’s another example

At first students are probably more stressed. The questions could be ANYTHING! The only thing students CAN do is EVERYTHING I want them to do! They have to draw force diagrams! Make graphs! Write out expressions for sum of torque and sum of forces. They have to consider all of the possibilities. And this is exactly what they need.

And the results?

First and foremost, implementing this strategy did NOT cause a huge increase in scores. In fact, some students still did kind of awful. What it DID do, what move up the mid-group from an anxiety score to a score that matched their classroom performance. This was particularly noticeable for.. you guessed it… my female students. The pretest in this case was a sample of questions from the unit one progress check. Students answered these in “test mode”. The post test was the actual kinematics exam. Below are the results:

Of course then I had to find out if it stuck. So when we got to the momentum test in January, I ran the data again. This time, there was no intervention: no sneak peek. And guess what happened?

What’s interesting is the number of male students who actually saw a decrease in score. I have a number of theories on this one, part of which being that they generally performed well on the first exam and so did not have that push to improve over time.

Due to the results of these data I have continued to implement this practice. After all, the goal is to get students working the problem, not searching for an answer!

Teaching Methods

Retrieve Note Taking

“Ms. R I feel smart today!”

That was an exclamation I received from a student that made my entire week. What gave this student so much confidence? Retrieve note-taking.

Here’s how retrieve note-taking works.

  1. You lecture to the students as normal. Students have their full attention on you. No one is permitted to write.
  2. You stop talking and let the kids start writing.

That’s pretty much it! But wait… we can make it more powerful

3. Let students discuss their notes together so they can fill in any of the gaps
4. Put the slides back up on the screen so students can fill any gaps that remain.

I did today’s retrieve-note taking with my lecture on curved mirror rules. The first time I did this I was really concerned about the extra time it took. However, I’ve learned that the right kind of extra time always pays off in the end, and this is a perfect example.

I break the lecture down into 3 parts, and I have a packet for students to follow along. The packet also reduces the cognitive load and allows students to feel at ease that they don’t have to remember EVERYTHING

Here’s page 1. I do these notes up on the smart board for the first round:

Note: my smartboard notes are NOT a carbon copy of the packet. See below

Next we do the rules for the concave mirror, and last we do the rules for a convex mirror.

Here’s where the magic happens. When students are left to retrieve the information and record it in their packets, they are immediately processing the information. They are asking each other clarifying questions, it’s AMAZING. And because they are working with the material right away, there’s not a lot of time to forget.

So where’s the big pay off? In the homework. Previously I would find myself going from group to group re-explaining how to do the ray diagramming. Using the retrieval method I no longer have to do this and I can work with just the few students who really need extra support! My students actually complete more work more quickly and with more confidence than had I lectured traditionally.

So why does this work?

Whenever we receive new information our brain tries to fit it in to what we already know. The more connections the brain can make, the stronger the new connection will be, and the better we will be able to retrieve that information later. Making connections also allows you to chunk information, similar to why phone numbers are written like 123-456-7890.

This retrieval exercise provides students four different encounters with the material: orally, visually, written and verbal.

  1. First they get the material orally and visually as it’s presented on the slides.
  2. Then they reproduce this material by drawing and writing
  3. They are also discussing the information

By the time they are using and practicing, since they have engaged at such a high rate they are more than ready to go!

Did you like this? Read more about how I use retrieval practices in my classroom here!